НАУЧНЫЕ ПРИНЦИПЫ ПОДБОРА СОРТОВ И ИССЛЕДОВАНИЯ ИХ РОСТА И РАЗВИТИЯ С УЧЕТОМ СПЕЦИФИКИ КЛИМАТА

Хужахметова А. Ш.,

K. C.-X. H..

Всероссийский научно-исследовательский институт агролесомелиорации vnialmi@yandex.ru

Аннотация. Дано научное обоснование подбора сортов фундука (Футкурами, Черкесский-2, Президент). Представлены материалы исследований по росту, развитию и изменчивости лещиновых в условиях интродукции и установлены закономерности их роста и развития.

Ключевые слова: критерии подбора, интродукция, биоразнообразие, закономерности роста и развития, лещиновые.

SCIENTIFIC PRINCIPLES OF SELECTING VARIETIES RESEARCH OF LAWS THEIR GROWTH AND DEVELOPMENT-SPECIFIC CLIMATE

Huzhahmetova A. Sh.,

Master of Agriculture,

All-Russian research institute of an agrolesomelioration

Abstract. The scientific justification for the selection of hazelnut varieties (Futkurami, Circassian-2, President). Presented research papers on the growth, development and filbert variability in the conditions of introduction and the regularities of their growth and development.

Keywords: criteria of selection, introduction, biodiversity, patterns of growth and development, filbert.

естественных насаждениях Нижнего Поволжья отсутствуют орехоплодные породы. Традиционно в частном садоводстве можно встретить лещину обыкновенную. Лещина понтийская или фундук является наиболее ценным растением среди огромного разнообразия орехоплодных культур [1, 2].

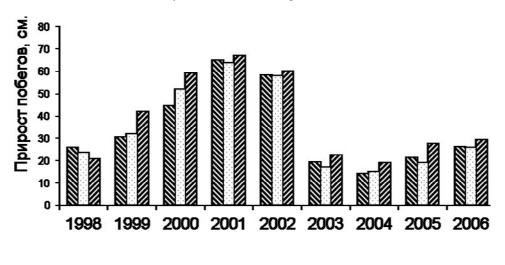
С 1998 года с целью создания насаждений для многоцелевого использования (плодовые и агролесомелиоративные) в условиях сухой степи (Волгоградская область) проводятся работы по определению биологического потенциала наиболее морозостойких сортов фундука—Черкесский-2, Футкурами, Президент. Посадочный материал получен из Всероссийского НИИ цветоводства и субтропических культур. Место посадки — коллекционный участок производственного питомника ФГУП «Волгоградское» (г. Волгоград), почвы светло-каштановые, содержание гумуса до 1%.

С целью подбора адаптированных сортов к условиям Нижнего Поволжья изучались рост, развитие, особенности цветения и плодоношения, а также отношение различных сортов к новым условиям произрастания. Все сорта фундука имеют короткий период роста и весной начинают рано вегетировать (III декада марта), что на месяц позже, чем в условиях Черноморского побережья. Для распускания почек требуется сумма положительных эффективных температур (свыше 5ε C) с 60 до 100ε C и постоянная среднесуточная температура воздуха от 5 до 10ε C. В зависимости от метеорологических условий вегетационного периода эти фазы развития могут незначительно смещаться [3].

Все сорта фундука проходят полный цикл развития в условиях Волгоградской области. Вегетационный период составил — 205-215 дней. Разница в ритме развития между сортами незначительная.

При создании насаждений с участием сортового материала проводилась послепосадочная обрезка саженцев на высоте 15-20 см от земли. В результате удаления верхушечной почки побег продолжения главной оси кустарника возобновился из боковой почки. Рост побега главной оси проходил по моноподиальному типу. Ветвление кустов наблюдалось уже с 2-3-летнего возраста. До четырех летнего возраста главная ось четко выделялась из системы побегов и отличается от (слабее растущих наклоненных в стороны) боковых ветвей – вертикальным положением и толщиной.

Ослабление роста главной оси отмечено в 6-летнем возрасте. В этот период из спящих пазушных почек у ее основания, возникают побеги боковых осей. Они образуют группу побегов высшего порядка превосходящую главную ось по высоте и толщине.


Быстрый рост боковых осей надземных частей из спящих почек приводит к тому, что к 6-летнему возрасту они достигают высоты и толщины главной оси, а затем превосходит ее. С 7-летнего возраста верхушка оси возобновления теряется среди ее быстрорастущих боковых ветвей. В последующий год

рактером изменения длин междоузлий и характером появления боковых побегов и их качеством. В условиях освещения развиваются более мощные, а в затененных участках кроны — слабые побеговые системы. Ярусность кроны у лещины понтийской в условиях Волгоградской области практически не выражена.

В сухостепных условиях при хорошей освещенности и дополнительном увлажнении более интенсивно происходят этапы формирования побеговых систем, и характерной особенностью их развития является сокращение длительности роста главной оси и более ранний переход от моноподиального к симподиальному типу ветвления побегов [5].

Различия требований к условиям среды у сортов проявилось при изучении ростовых процессов. Начало роста побегов совпадало с полным раскрытием листовых почек. Общей закономерностью является рост побегов по типу одновершинной кривой.

С возрастом прирост у сортов увеличивается, в первый год он незначителен, что было связано с

ВПрезидент □Футкурами ☑Черкесский

Pисунок 1 — Cезонный прирост верхушечных побегов

спящие почки боковых осей дали начало осям более высокого порядка – осям возобновления [4].

Каждый период характеризуется определенным местом на побеге и продолжительностью, ха-

приживаемостью и засушливостью вегетационного периода. С шестилетнего возраста у фундука происходит интенсивное разрастание кустов, прирост верхушечных побегов снижается (рис. 1).

У сортов фундука в остро засушливые годы (1998-1999, 2002 гг.) наблюдались летние повреждения, которые носили термический характер. В периоды снижения сухости воздуха (до 25%) у растений нарушался тургор листьев. В благоприятный период (после дополнительного увлажнения) тургор восстанавливался. Полностью погибших листьев (весь лист бурый) у сортов фундука не отмечалось. Единичные повреждения, составляющие до 10% от площади листовой пластинки имелись у сортов Футкурами и Черкесский-2. У всех сортов фундука с увеличением возраста возрастает устойчивость к высоким температурам и сухости воздуха.

Важнейшим условием нормального существования растений, которое влияет на активность фото-

синтеза и дыхание, рост и плодообразование является водообеспеченность растений.

Рост и развитие фундука тесно связаны с водным режимом растений [6. 7]. Оводненность листьев была примерно одинаковой у всех сортов, но соотношение между сортами по скорости водоотдачи было различным (рис. 2).

В начале завядания наименьшая скорость потери воды отмечалась у сорта Черкесский-2, за ним с незначительной разницей следовал Президент и, наконец, наибольшей скоростью водоотдачи характеризовался Футкурами. Водоудерживающая способность сортов фундука изменялась по величине в зависимости от сорта и срока определения.

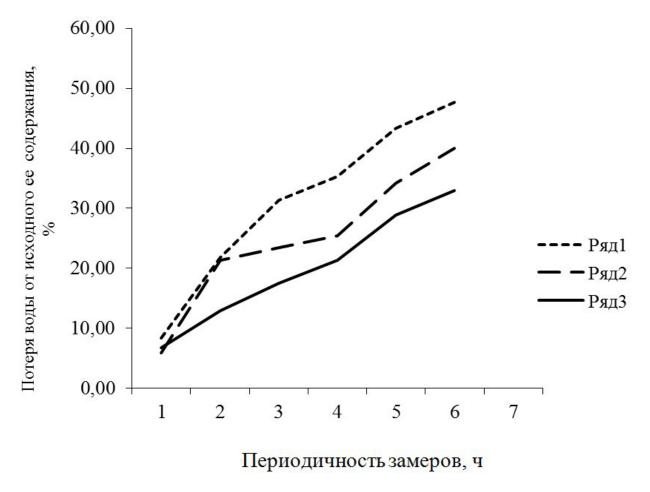


Рисунок 2 – Водоудерживающая способность листьев фундука:

1 – Футкурами, 2 – Президент, 3 – Черкесский-2

Рост растений зависит от влагообеспеченности почвы и приходится на весенне-летний период, когда водный дефицит листьев составляет 15,6-17,9 %. При температуре выше +30єС и относительной влажности воздуха 25 % водный дефицит у сортов Черкесский-2, Президент и Футкурами соответственно составил 33,5; 34,2 и 38,5 %. У Футкурами в этот период были отмечены повреждения листовой пластинки (10 %) и нарушение тургора листьев.

Главную роль в способности переносить засушливый период играет устойчивость клеточных мембран к обезвоживанию. Оценка сортов электролитическим методом представлена в таблице 1.

Наибольшие различия по степени устойчивости клеточных структур к засухе отмечены у сортов Черкесский-2 и Футкурами, у которых мембраны клеток обладают сравнительно одинаковой

устойчивостью к воздействию высоких температур. С увеличением возраста возрастает структурная устойчивость фундука к неблагоприятным условиям.

Исходя из выше изложенного, при возделывании различных сортов требуются определенные условия водного режима или же соответствующая экспозиция размещения.

Рассматривать приспособление фундука к засушливым условиям можно двояко: как адаптацию отдельных индивидуумов в онтогенезе или как адаптацию группы особей, т. е. в целом всего сорта. Примером изменчивости сортов могут служить размеры листьев и генеративных органов (рис. 3).

Индивидуальная изменчивость, выраженная коэффициентом вариации, показала, что у сортов Футкурами и Президент вариабильность листьев ниже по сравнению с Черкесским-2 (табл. 2).

Сравнительная оценка фундука по относительному выходу электролитов (возраст 7 лет)

Сорт фундука	Высота, м	Относительный выход электролитов	Критерий достоверности Стьюдента между сортами		
Президент	2,62	1,90±0,06	П-Ч = 1,25		
Футкурами	2,43	2,24±0,05	Ψ - Φ = 7,60		
Черкесский	2,82	1,81±0,04	П-Ф = 4,72		

Коэффициент изменчивости листьев фундука, %

Таблица 2

Таблица 1

Commo	Коэффициент изменчивости по морфологическим признакам						
Сорта	число жилок	длина листа	длина черешка	верхний угол	нижний угол	ширина листа	
Футкурами	10,34	11,99	25,24	9,41	9,43	18,49	
Президент	9,03	12,11	17,97	9,39	9,23	9,18	
Черкесский-2	15,05	17,82	9,18	23,52	24,43	20,15	

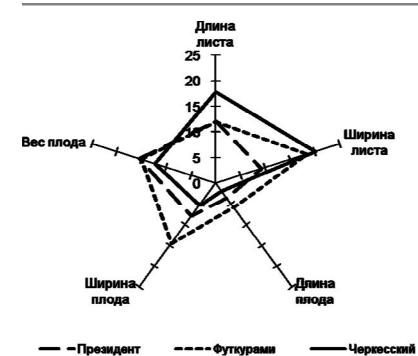


Рисунок 3 – Показатели морфологического сходства листьев и генеративных органов

Чтобы судить об успешности возделывания сортов в новых условиях, необходимо изучение особенностей плодоношения. Все растения вступили в генеративную фазу в возрасте 4-5 лет. Цветение тычиночных и пестичных цветков предшествует распусканию почек. От периода опыления до полной физиологической спелости плодов для всех сортов в условиях сухой степи требуется 150-180 дней. Более раннее созревание орехов отмечено у Футкурами (І декада августа), далее следует Президент (ІІ декада августа) и в ІІІ декаде августа созревают плоды у сорта Черкесский-2. Орехи различных сортов варьируют по величине и форме.

Качество орехов фундука является одним из важнейших показателей при сортоиспытании (табл. 3). В условиях Волгоградской области в семилетнем возрасте орехи изученных сортов характеризовались неплохой выполненностью ядра, легкой его извлекаемостью, хорошими вкусовыми достоинствами.

Плоды питательны, содержат около 70 % жиров, 10 % белка и 3,5 % сахара (табл. 4). В их ядрах содержится также значительное количество витаминов, углеводов и минеральных солей.

Таблица 3 Плодовая продуктивность различных сортов фундука в условиях сухой степи

Сорт	Масса плодов на куст кг	Число плодов на куст, шт.	Масса одного ореха, г	Выход ядра, %	Кол-во ядра в 1 см ³ объема ореха, г
Президент	2,0	715	2,80±0,07	48	0,42
Футкурами	2,0	953	2,10±0,07	51	0,44
Черкесский	2,5	1180	2,12±0,03	54	0,53

Таблица 4

Химический состав плодов фундука

		Содержание				
Сорт	Выход ядра, %	белка	жира	P	К	Зола
		%		мг на 100 г		
Президент	48	11,60	67,40	0,29	0,52	2,65
Футкурами	51	10,76	68,60	0,29	0,52	2,41
Черкесский-2	54	8,53	70,60	0,22	0,32	2,04

Оценку с точки зрения зимостойкости в Волгоградской области позволили дать зимы 1998/1999, 1999/2000 и 2005/2006 гг., которые характеризовались резкими температурными перепадами. В 1998/1999, 1999/2000 гг. повреждений стволиков над уровнем снегового покрова в виде трещин и морозобоин, подмерзаний верхушечных почек и повреждений развернувшихся листьев весенними заморозками у фундука не наблюдалось. Фундук совершенно без повреждений переносит понижения температуры до –25-30 °C.

При длительном понижении температуры во второй половине января у всех сортов наиболее уязвимы мужские соцветия (сережки), по сравнению с женскими, в зиму 2005/06 гг. при снижении температуры до – 37°С мужские полностью оказались неспособные к цветению (весной имели бурую окраску), женские соцветия были жизнеспособны (рыльца с характерной окраской).

В условиях сухой степи фундук – типичный кустарник, образующий большое количество и обладающий способностью обильного порослеобразования.

Начиная с 4-5 —летнего возраста, растения фундука образуют в большом количестве порослевые побеги. С этого возраста необходимо проводить работы по выращиванию поросли, идущей на получение посадочного материала.

Появлению обильной поросли в засушливых условиях способствует полив. В условиях светло-каштановых почв стандартный посадочный материал сортов фундука (Президент, Черкесский-2) можно получить за два вегетационных периода.

Сравнительная оценка сортов фундука (Черкесский-2, Футкурами, Президент) показали потенциальные возможности этих культур в условиях засушливого климата. Ограничивающее влияние сухости воздуха на развитие фундука, имеющее конкретное проявление в период цветения и завязывания плодов, может быть смягчено или даже устранено правильным выбором микроучастков для конкретного сорта. Второй по значимости фактор – обеспечение влагой – при возделывании фундука можно регулировать.

Список литературы

- 1. Махно В.Г. Культура фундука ее возможности выращивания в зонах рискованного земледелия / В.Г. Махно, Э.К. Пчихачев. Майкоп, 1995. 38 с.
- 2. Huzhahmetova A.Sh. Introduction nutty bushes in the Volgograd region and methods for their selection for protective afforestation and greening // Відновлення порушених природних екосистем: Матер. V міжнар. наук. конф. (м. Донецьк, 12-15 травня 2014 р.). Донецьк, 2014. С. 255-257.

- 3. Научно-методические рекомендации по выращиванию фундука в засушливых условиях Нижнего Поволжья / А. В. Семенютина [и др.]. Сочи: ГНУ ВНИИЦиСК Россельхозакадемии, ГНУ ВНИАЛМИ Россельхозакадемии, 2011. 56 с.
- 4. Хужахметова А.Ш. Морфогенез побеговых систем Corylus pontica на светло-каштановых почвах // Ломоносов 2011. Секция «Биология»: 18 междунар. науч. конф. студентов, аспирантов и молодых ученых. М.: МАКС Пресс, 2011. С. 63.
- 5. Научно-методические указания по оптимизации дендрофлоры лесомелиоративных комплексов [Текст] / А. В. Семенютина [и др.]. – Волгоград, 2012. – 40 с.
- 6. Хужахметова А.Ш. Оптимизация лесомелиоративных насаждений засушливого региона видами родовых комплексов Corylus и Juglans / А.Ш. Хужахметова, С.С. Таран // Известия Нижневолжского агроуниверситетского комплекса. 2013. № 3 (31). С. 106-111.
- 7. Huzhahmetova A.Sh. Introduction of nut shrubs for planting multipurpose // The role of botanical gardens in conservation of plant diversity: proceeding of the international scientific practical conference Dedicated to 100th Anniversary of Batumi Botanical Garden. Part I. Batumi, Georgia, 2013. P. 113.